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Some of the many practical advantages of collecting a complete data set are discussed. These include the 
detection of errors in the measurement of intensities, assignment of meaningful standard deviations to the 
intensities, and, if anomalous scattering is important, the determination of the point group. 

With the advent of multi-circle diffractometers it has 
become easy to collect a// intensity data within a given range 
of scattering angle. In this note we point out some of the 
important  advantages of such a procedure. 

Consider first a light-atom structure in which anomalous 
scattering may be neglected. It is a matter of experience 
that even from a non-absorbing, centrosymmetric crystal 
I (hk l )  will generally differ systematically from l ( h k l )  re- 
gardless of counting times*. Therefore, under sensible 
experimental conditions a better average data set is apt 
to result if one collects all N of the equivalent forms and 
then averages these (after corrections for absorption and 
other effects, if appropriate) rather than if one spends N 
times as long counting each of the 1 /N  independent reflec- 
tions. Particularly if one collects these equivalent forms 
at widely varying times during the experiment, then com- 
parison of the individual estimates of a(I)  with those ob- 
tained from the spread among the equivalent forms pro- 
vides a very useful means of detecting electronic and crystal 
instabilities, as well as gross errors in setting and accidental 
events, such as occasional scattering from a secondary 
crystallite. In addition, such a comparison enables one to 
assess the inherent uncertainties in the particular data set 
and to assign standard deviations that apply meaningfully 
to the particular crystal at hand (Corfield, Doedens & 
Ibers, 1967). 

Consider now the case where anomalous dispersion is 
important. Before the comparisons indicated above can 
be made, it is necessary to know the point group. To take 
a trivial example, if the point group is 1, and if the effects 
of anomalous dispersion are detectable, then F2(hkl)  may 
not be averaged with F2(hk.l); if the point group is I, then 
these two forms may be averaged. In principle't" the point 
group can be determined from the data set by noting the 
manner in which the N equivalent reflections of a given 
Laue class separate into two subsets of N/2  equivalent 
reflections if Friedel's Law breaks down. Reflections that 
are equivalent to a given one by the operations of the point 
group remain equivalent. The N / 2  members of a subset 
are readily derived by inspection of the relations among 
the phase angles, or since these are not given explicitly 
in all cases in International Tables (1965), by noting that 
the sign of the B term must remain the same for the equi- 
valent reflections in the subset in the space group formed 
by putting a P in front of the point group symbol. (This 
latter criterion holds for the standard settings of the space 

* This systematic difference presumably arises from non- 
isotropic effects, such as extinction. It is handled in the usual 
expression for the variance of the intensity by including con- 
tributions from counting errors and from a term proportional 
to the square of the intensity (Busing & Levy, 1957). 

I" This is touched upon in International Tables for  X-ray 
Crystallography (1965, p. 346). 

groups in question. It would not necessarily hold on shift 
of origin.) In the accompanying table we present the sets 
of reciprocal lattice points that remain equivalent under 
the operations of the various point groups. In some cases 
alternate settings of the symmetry elements with respect to 
the cell are possible in the Laue group; the table includes 
information which enables one to distinguish one setting 
from the other. 

If  the effects of anomalous dispersion are greater than the 
errors of measurement in the intensity data, then after 
correction for absorption effects the entire data set may 
be scanned with the aid of a computer and the point group 
determined. After the point group has been determined, 
then the appropriate reflections may be averaged together 
and the same checks made on crystal and electronic stability, 
as noted above. Obviously if the effects of anomalous 

Table 1. Reciprocal lattice points  equivalent under the opera- 
tions o f  a given non-centrosymmetric  point  group 

Point group Equivalent reflections 
1 hkl* 
2 / second h k l = h k i  
m f setting hk l= hid 
222 hk l=hk . l=hkI=h[d  
mm2 h k l = h k l = h k l = h k l  
4 h k l = h ~ l = k h l = k h l  

hk l= h[cl = kh l= khl  
422 hkl = hkI= hid= h~l = kh l= ~.hl= kh l= khl  
4mm hkl = hkl = hkl = hkl = khl = khl = khl = khl 

}~2m hkl = hkI= hk l= hkl = khl = kh l= [chl= khl  
~2m ;[m2 hkl = hkl = hkl = hkl = kh l= kh l= kh l=  ~hl  

In all of the following cases, cyclic rotation of the first three 
indices (hki or hkl) yields additional equivalent reflections. 

3 h~at  
321 hkil = hikl 

32 312 hkil = hikl~ 
3ml hki l= hikl 

3m 31m hki l=hik l~  
6 hkil = hkH 
"6 hki l= hkil  
622 hkil = hkil = hik l= hikl  
6mm hkil = h[cil = hikl = hfkl 

"6m2 hki l= hki l= hikl = h iU 
"6m2 ~2rn hkil = hki[= hikl = hikl  
23 hkl = hld = hkl  = hkl 
432 hkl = hkl = hkI= hk l=  hlk = hlk = hffc = hilt 
~3m hkl = hkl = hk l= hk l=  hlk = hlk = hlk = hIk 

* The second subset of reflections is obtained by changing 
the signs of all indices. 

t All settings in the trigonal system are referred to hexagonal 
axes. 

Note that there is an error in the multiplicity tables of 
International Tables (1965), p. 34, 'additional note'. If Friedel's 
Law is obeyed, then in point groups 312 and 31m, hkil is 
equivalent to hiM, but not to hikl as stated. 
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dispersion are not statistically significant and the point 
group cannot be determined in some other manner, then 
it will be necessary to choose special radiations and re- 
flections for the point-group determination. A very impor- 
tant additional advantage of a complete data set when 
anomalous dispersion is important has been noted by 
Ueki, Zalkin, & Templeton (1966): particularly if the space 
group is polar, then it is possible to obtain a structure that 
differs from the correct one by many standard deviations 
if a partial data set is employed. 
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There are 227 crystal classes 

In 1951 one of us, (Hurley, 1951), derived a list of 222 
crystallographic point groups of R 4 using results of Goursat 
(1889). In the sequel some minor errors in this list have 
been detected. Therefore we have dealt again with these 
groups and reenumerated them by three independent 
methods: 
(1) A.C.H. has repeated the calculation leading to the 

results described in Hurley (1951). 
(2) J.N. and H.W. have used results of Hermann (1951). 

In this paper he dealt with the 'maximal crystallographic 
point symmetry groups'*. In R4 there are four of them. 
Two of order 1152 and 240 respectively which he called 
volltransitiv are explicitly described in his paper. The 
other two of orders 288 and 96, belonging to types 
which he called imprimitiv and intransitiv respectively, 
are not explicitly given. Hermann only states the fact 
that they are easily obtained from crystallographic 
point groups in lower dimensions. All crystallographic 
point groups of R4 are contained as subgroups in 
these four groups. The determination of these subgroups 
and their equivalence relations has been done with 
computer programs for the investigation of finite 
groups described in Neubtiser (1960) and Felsch & 
Neubfiser (1963). 

(3) E.C. Dade (1965) determined the maximal finite groups 
of integral 4 x 4 matrices up to transformation by 
integral unimodular matrices. There are nine of them. 
It is not difficult to see that under transformation 
by rational non-singular matrices they fall into seven 
crystal classes which correspond to Hermann's four 
groups and to some subgroups of these. We therefore 
used as in (2) the programs mentioned before to check 
the previous calculations. 

The results of all these methods agree and yield the fol- 
lowing corrections of the tables given in Hurley (1951): 
(i) In Table l(b) two crystal classes XXXV u =  2, v=2, 

D = I  and XXXVII m = u = v = l  of order 32 are equi- 
valent. 

(ii) The entry for crystal class XLIV of order 96 in Table 
l(b), p. 655, has to be replaced by 

1I + 9E+ 6F+ 8K+ 8N+ 6R+ 10T. 

* Mathematically formulated this means: he dealt with 
maximal finite groups of n × n integral matrices classified up 
to transformation by rational non-singular matrices. 

of four-dimensional space R4. 

(iii) The following 6 crystal classes which are subgroups 
of the corrected group XLIV have to be added: 
Table 2(a), p. 656, 
Order 24 l I+9E+8K+6R';  
Table 2(b), p. 658, 
Order 8 I I + I E + 2 F + 2 R + T + T ' ;  

24 l I+3E+6F+8K+6T';  
24 11+ 3E+ 6F+ 8K+ 6T; 
48 l I+9E+6F+8K+8N+6R'+3T+7T ' ;  
48 l I+9E+6F+8K+8N'+6R '+7T+3T ' .  

(iv) There are two misprints in Table l(b), p. 655: 
XXXIII/1 = 1, v = 1, D = 6, q = 1, I= 0 

should have 1 E instead of 1F 
XLIII should have 48C instead of 48A. 

(v) There are some misprints in the values of the Goursat 
parameters in the first columns of Tables 1 (a) and 1 (b). 
In family XII all values of n should be doubled, and 
in family XIII '  all values of both m and n should be 
doubled. In family XXXV the fifth member should 
have l = 2 instead of l=  3, and the final member should 
have q = 1, l=  r = 0. 

After these corrections the total number of crystal classes 
of R4 turns out to be 227. The complete list with further 
additions concerning relations to three-dimensional black- 
white- and grey-groups is being published by A.C.H. in the 
book: 
Quantum Theory of Atoms, Molecules, and the Solid State, 
a Tribute to John C. Slater. Edited by P.O. L6wdin. New 
York: Academic Press. (To appear 1966--67.) 

Other detailed information obtained in the course of the 
calculations described under (2) and (3) will be published 
later. 
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